Factorise: (3x-4y)^4-x^4
Answers
Answered by
1
Step-by-step explanation:
lUse the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk)(a+b)n=∑k=0nnCk⋅(an-kbk).
4∑k=04!(4−k)!k!⋅(3x)4−k⋅(−4y)k∑k=044!(4-k)!k!⋅(3x)4-k⋅(-4y)k
Expand the summation.
4!(4−0)!0!⋅(3x)4−0⋅(−4y)0+4!(4−1)!1!⋅(3x)4−1⋅(−4y)+4!(4−2)!2!⋅(3x)4−2⋅(−4y)2+4!(4−3)!3!⋅(3x)4−3⋅(−4y)3+4!(4−4)!4!⋅(3x)4−4⋅(−4y)44!(4-0)!0!⋅(3x)4-0⋅(-4y)0+4!(4-1)!1!⋅(3x)4-1⋅(-4y)+4!(4-2)!2!⋅(3x)4-2⋅(-4y)2+4!(4-3)!3!⋅(3x)4-3⋅(-4y)3+4!(4-4)!4!⋅(3x)4-4⋅(-4y)4
Simplify the exponents for each term of the expansion.
1⋅(3x)4⋅(−4y)0+4⋅(3x)3⋅(
Answered by
7
Step-by-step explanation:
I hope it helps you...
Brainliest pls...
Thank you... :)
Attachments:
Similar questions
Physics,
3 months ago
Social Sciences,
3 months ago
Computer Science,
3 months ago
Biology,
7 months ago
Math,
7 months ago
Math,
1 year ago