Math, asked by shashikalapatel81, 11 months ago

Factorise √3x²+ x - 10 √3

Answers

Answered by amitkumar44481
6

Solution :

We have,

  \tt \dagger \:  \:  \:  \:  \:  \: \sqrt{3}  {x}^{2}  + x - 10 \sqrt{3}.

Let Find there Zeros.

  • Splitting the middle term.
  • Quadratic Formula.

By Quadratic Formula.

 \tt \dagger \:  \:  \:  \:  \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Where as,

  • a = √3.
  • b = 1.
  • c = -10√3.

  \tt \longmapsto x =  \dfrac{ - 1 \pm \sqrt{ {1}^{2}   - 4 \sqrt{3} \times  - 10 \sqrt{3}  }}{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ - 1 \pm \sqrt{120+ 1 } }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ - 1 \pm \sqrt{121 } }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ - 1 \pm \sqrt{11 \times 11 } }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ - 1 \pm 11 }{2 \sqrt{3} }

Either,

 \tt \longmapsto x =  \dfrac{ - 1  + 11 }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ 10 }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ 5 }{ \sqrt{3} }

Or,

 \tt \longmapsto x =  \dfrac{ - 1  - 11 }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ -12 }{2 \sqrt{3} }

 \tt \longmapsto x =  \dfrac{ - 6}{ \sqrt{3} }

Therefore, the value of x is -6 /√3 and 5/√3.

Similar questions