Math, asked by piu11, 1 year ago

factorise: 4a(a+b) - 6(a+b)2

Answers

Answered by siddhartharao77
2
Given : 4a(a + b) - 6(a + b)^2

= > 4a^2 + 4ab - 6(a^2 + b^2 + 2ab)

= > 4a^2 + 4ab - 6a^2 - 6b^2 - 12ab

= > -2a^2 - 8ab - 6b^2

= > -2(a^2 + 4ab + 3b^2)

= > -2(a^2 + 3ab + ab + 3b^2)

= > -2(a(a + 3b) + b(a + 3b))

= > -2(a + b)(a + 3b).


Hope this helps!

siddhartharao77: :-)
Answered by Cathenna
1

 =  > 4a(a + b) - 6 {(a + b)}^{2}  \\  \\  =   > 4 {a}^{2}  + 4ab - 6( {a}^{2}  +  {b}^{2}  + 2ab) \\  \\  =  > 4 {a}^{2}  + 4ab - 6 {a}^{2}  - 6 {b}^{2}  - 12ab \\  \\  =  >  - 2 {a}^{2}  - 6 {b}^{2}  - 8ab \\  \\  =  >  - 2( {a}^{2}   + 3 {b}^{2}  + 4ab) \\  \\  =  >  - 2( {a}^{2}  + ab + 3 {b}^{2}  + 3ab) \\  \\  =  >  - 2(a(a + b) + 3b(a + b)) \\  \\  =  >  - 2(a + b)(a + 3b)
Similar questions