Factorise 4a² - 4ab + b² by using the identity a² - 2ab + b² = (a-b)
Answers
Answered by
1
Answer:
4a
2
+b
2
+c
2
−4ab+2bc−4ca
=(2a)
2
+(−b)
2
−(c)
2
−2(2a)(−b)+2(−b)(−c)+2(2a)(−b)
We know that x
2
+y
2
+z
2
+2xy+2yz+2xz=(x+y+z)
2
Here, x=2a, y=−b and z=−c
4a
2
+b
2
+c
2
−4ab+2bc−4ca
=(2a)
2
+(−b)
2
−(c)
2
−2(2a)(−b)+2(−b)(−c)+2(2a)(−b)
=(2a−b−c)
2
=(2a−b−c)(2a−b−c)
Step-by-step explanation:
Mark as brilliant please I hope my answer will help you
Answered by
3
Answer:
Answer:
4a
2
+b
2
+c
2
−4ab+2bc−4ca
=(2a)
2
+(−b)
2
−(c)
2
−2(2a)(−b)+2(−b)(−c)+2(2a)(−b)
We know that x
2
+y
2
+z
2
+2xy+2yz+2xz=(x+y+z)
2
Here, x=2a, y=−b and z=−c
4a
2
+b
2
+c
2
−4ab+2bc−4ca
=(2a)
2
+(−b)
2
−(c)
2
−2(2a)(−b)+2(−b)(−c)+2(2a)(−b)
=(2a−b−c)
2
=(2a−b−c)(2a−b−c
Similar questions