Factorise :- 4x^2-√3x-5 by completing the square.
Answers
Answered by
8
Factorising 4x² - √3x - 5 by completing the square.
SOLUTION:
Here,
a = 4,
b = -√3,
and c = -5
4x² - √3x - 5 = 0
[Multiply 4a = 4(4) = 16 to both RHS and LHS]
16( 4x² - √3x - 5 = 0 ) = 16 × 0
⇒ 64x² - 16√3x - 80 = 0
[Take the constant to RHS]
⇒ 64x² - 16√3x = 80
[Try to put the LHS in the form (a+b)² or (a-b)² ]
⇒ (8x)² - 2 (8x) (√3) + (√3)² = (√3)² + 80
[ we take 8x = a, and √3 = b ]
⇒ (8x - √3)² = 3 + 80
[ (8x)² - 2 (8x) (√3) + (√3)² = (8x - √3)², in form (a)² - 2ab + (b)² = (a - b)² ]
⇒ (8x - √3)² = 83
⇒ 8x - √3 = ± √83
⇒ 8x = ± √83 + √3
⇒ x =
Similar questions