Math, asked by sharmavardaaan, 12 hours ago

Factorise 4x² + 9 – 12x – a² – b² + 2ab

Answers

Answered by ScariousKnight
37

Solution

4x {}^{2}  + 9 - 12x -  {a}^{2}  -  {b}^{2}  + 2ab \\  \\  = (4x {}^{2}  - 12x + 9) - ( {a}^{2}  +  {b}^{2}  - 2ab) \\  \\  = (2x - 3) {}^{2}  - (a - b) {}^{2}  \\  \\  = [(2x - 3)  + (a - b)][(2x - 3)  - (a - b)] \\  \\  = (2x - 3 + a - b)(2x - 3 - a  +  b)

 \huge \fbox  \red{Hope This Helps}

Answered by masura8080
9

From the given question the correct answer is:

the factor of  4x² + 9 – 12x – a² – b² + 2ab is (2x+3-a+b)(2x-3+a+b)

Given:

4x² + 9 – 12x – a² – b² + 2ab

To find:

we have to factorization

4x² + 9 – 12x – a² – b² + 2ab

Solution:

we will factorize the 4x² + 9 – 12x – a²– b² + 2ab

First, we will grouped the expression

 =(4x² + 9 – 12x) – (a²– b² + 2ab)

=(4x² – 12x+ 9 ) – (a²+ 2ab– b² )

we know that

(a-b)²=a²+2ab-b²

we can write the eqaution

=(2x-3)²-(a-b)²

we also know that,

a²-b²=(a-b)(a+b)

so,

[(2x-3)-(a-b)][(2x-3)+(a-b)]

simplify the expression

(2x+3-a+b)(2x-3+a+b)

Hence, the factor of  4x² + 9 – 12x – a² – b² + 2ab is (2x+3-a+b)(2x-3+a+b)

Similar questions