Math, asked by saurav163, 1 year ago

Factorise: 4x²+9y²+16z²+12xy-24yz-16xz

Answers

Answered by steeve
296

Solution:
     4x²+9y²+16z²+12xy -24yz -16xz

=  (2x)²+(3y)²+(4z)²+2(2)(3)xy -2(3)(4)yz -2(2x)(4z)

= (2x + 3y - 4z)(2x + 3y - 4z)

7764900398: Okk koi bt nhi
7764900398: u have any questions
saurav163: hmm thode bhut hai
7764900398: 10 me hi ho Na tmm
saurav163: ab jaaunga
saurav163: 10th mai
7764900398: ooo
saurav163: 9th mai maths mai compartment aagyi islie dout puch rha hu
7764900398: Accha
7764900398: mai to 10th ka exam de rhi huu
Answered by ajajit9217
15

Answer:

4x² + 9y² + 16z² + 12xy - 24yz - 16xz can be factorized as

(2x + 3y - 4z)(2x + 3y - 4z)

Step-by-step explanation:

Given equation : 4x²+9y²+16z²+12xy-24yz-16xz

This can be written as

= (2x)²+(3y)²+2*(2x)*(3y)+(4z)²-2*(3y)*(4z)-2*(2x)*(4z)

We know that (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

Comparing both the equations, we get,

a = 2x , b = 3y , c = - 4z

Therefore,

=> (2x)²+(3y)²+2*(2x)*(3y)+(4z)²-2*(3y)*(4z)-2*(2x)*(4z)

= (2x + 3y - 4z)²

= (2x + 3y - 4z)(2x + 3y - 4z)

Therefore, 4x²+9y²+16z²+12xy-24yz-16xz can be factorized as

(2x + 3y - 4z)(2x + 3y - 4z)

Similar questions