factorise: - 4x²+9y²+16z²+12xy-24yz-16xz plz help
Answers
Answer:
2x + 3y - 4z) (2x + 3y - 4z)
Step-by-step explanation:
4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz
We use this identity here...
(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz
= (2x)^2 + (3y)^2 + (4y)^2 + 2 × 2x × 3y + 2 × 3y × (-4y) + 2 × 2x × (-4y)
= (2x + 3y - 4z)^2
= (2x + 3y - 4z) (2x + 3y - 4z)
Hope it helps.....
pls mark me as brainliest friend and pls follow me and post thanks.......
Thank you
Question :
Factorise: - 4x²+9y²+16z²+12xy-24yz-16xz.
SoIution :
Let's start with what is given ; factorize :
⇒ 4x² + 9y² + 16z² + 12xy - 24yz - 16xz
Now comparing that with the identity :
⇔ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Now we get :
⇒ 4x² + 9y² + 16z² + 12xy - 24yz - 16xz
⇒ (2x)² + (3y)² + (-4z)² + 2 × 2x × 3y + 2 × 3y × (-4z) + 2 × (-4z) × 2x
⇒ [2x + 3y + (-4z)]²
⇒ [2x + 3y - 4z]²
⇒ (2x + 3y - 4z) (2x + 3y - 4z)
∴ Required answer = (2x + 3y - 4z) (2x + 3y - 4z)
More identities :
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- (a + b)² = (a - b)² + 4ab
- (a - b)² = (a + b)² - 4ab
- a³ + b³ = (a + b)³ - 3ab(a + b)
- a³ - b³ = (a - b)³ + 3ab(a - b)