Math, asked by camlin3912, 1 year ago

Factorise 54x^3+10 sqrt 5 y^3+18 sqrt 5x^2 y+30xy^2

Answers

Answered by hukam0685
19

Answer:

 \bold{54 {x}^{3}  + 10 \sqrt{5} {y}^{3}   + 18 \sqrt{5}  {x}^{2} y + 30x {y}^{2} }\\  \\  =  \bold{2(3x +  \sqrt{5}y)(9 {x}^{2}   + 5  {y}^{2} )}

Step-by-step explanation:

54 {x}^{3}  + 10 \sqrt{5} {y}^{3}   + 18 \sqrt{5}  {x}^{2} y + 30x {y}^{2} \\  \\ \\

To factorise the polynomial shuffle the terms so that we can take common terms from the first two and last two terms,as shown below

 = (54 {x}^{3}  + 10 \sqrt{5} {y}^{3}   + 18 \sqrt{5}  {x}^{2} y + 30x {y}^{2}) \\  \\  = 54 {x}^{3}  + 18 \sqrt{5}  {x}^{2}y + 30x {y}^{2} + 10 \sqrt{5} {y}^{3}      \\  \\ =  18 {x}^{2} (3x +  \sqrt{5}y) + 10 {y}^{2}(3x +  \sqrt{5}y)    \\  \\ =  (3x +  \sqrt{5}y)(18 {x}^{2}   + 10  {y}^{2} ) \\  \\ =  (3x +  \sqrt{5}y).2.(9 {x}^{2}   + 5  {y}^{2} ) \\  \\  = \bold{2(3x +  \sqrt{5}y)(9 {x}^{2}   + 5  {y}^{2} )}

Hope it helps you.

Similar questions