Math, asked by DDR108, 1 month ago

factorise (5a-4b)^3+(4b-3c)^3-(5a-3c)^3
be fast with steps​​

Answers

Answered by tennetiraj86
7

Step-by-step explanation:

Given :-

(5a-4b)³+(4b-3c)³-(5a-3c)³

To find:-

Factorise the expression?

Solution :-

Given expression is (5a-4b)³+(4b-3c)³-(5a-3c)³

It can be written as

=> (5a-4b)³+(4b-3c)³+[-(5a-3c)]³

=> (5a-4b)³+(4b-3c)³+(-5a+3c)³

It is in the form of x³+y³+z³

Where , x = 5a-4b , y = 4b-3c and

z = 3c-5a

And

x+y+z => 5a-4b+4b-3c+3c-5a = 0

We know that

If x+y+z = 0 then x³+y³+z³ = 3xyz

We have ,(5a-4b)³+(4b-3c)³+(-5a+3c)³

=> 3(5a-4b)(4b-3c)(-5a+3c)

=> 3(5a-4b)(4b-3c)(3c-5a)

Therefore, (5a-4b)³+(4b-3c)³-(5a-3c)³

= 3(5a-4b)(4b-3c)(3c-5a)

Answer:-

The factorization of (5a-4b)³+(4b-3c)³-(5a-3c)³ is

3(5a-4b)(4b-3c)(3c-5a)

Used formulae:-

  • If x+y+z = 0 then x³+y³+z³ = 3xyz
  • -(a)³ = (-a)³ = -a³
Answered by Srimi55
6

Answer:

</p><p>[tex] \bold{ \mathtt{ {(5a - 4b)}^{3} +  {(4b - 3c)}^{3} +  {(3c - 5a)}^{3}}}

 \bold{ \mathtt{ \blue{put \:  \:  \: 5a - 4b = p}}} \\  \bold{ \mathtt{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \: 4b - 3c = q}}} \\  \bold{ \mathtt{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  3c - 5a = r}}} \\  \\  \bold{ \mathtt{ \blue{now \: \:  \:  \:  \:   \:  \: p + q + r}}} \\  \bold{ \mathtt{ \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: = 5a - 4b + 4b - 3c + 3c - 5a}}} \\  \bold{ \mathtt{ \blue{ = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}

 \bold{ \mathtt{  \green{{(5a - 4b)}^{3} +  {(4b - 3c)}^{3} +  {(3c - 5a)}^{3}}}} \\  \bold{ \mathtt{  \green{ = {p}^{3} +  {q}^{3} +  {r}^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}} \\ \bold{ \mathtt{  \green{ = 3pqr \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}} \\ \bold{ \mathtt{  \green{ = 3(5a - 4b)(4b - 3c)(3c - 5a)}}}[/tex]

Similar questions