Math, asked by pyataruthwek, 2 days ago

factorise:-64γ2−64lp+4p​

Answers

Answered by ayanhjsr
2

Answer:

HEY MATE HERE'S UR ANSWER ...!

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

 p -  26p4

STEP

2

:

STEP

3

:

Pulling out like terms

3.1     Pull out like factors :

  p - 64p4  =   -p • (64p3 - 1)  

Trying to factor as a Difference of Cubes:

3.2      Factoring:  64p3 - 1  

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into

             (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =

           a3+a2b+ab2-ba2-b2a-b3 =

           a3+(a2b-ba2)+(ab2-b2a)-b3 =

           a3+0+0-b3 =

           a3-b3

Check :  64  is the cube of  4  

Check :  1  is the cube of   1  

Check :  p3 is the cube of   p1

Factorization is :

            (4p - 1)  •  (16p2 + 4p + 1)  

Trying to factor by splitting the middle term

3.3     Factoring  16p2 + 4p + 1  

The first term is,  16p2  its coefficient is  16 .

The middle term is,  +4p  its coefficient is  4 .

The last term, "the constant", is  +1  

Step-1 : Multiply the coefficient of the first term by the constant   16 • 1 = 16  

Step-2 : Find two factors of  16  whose sum equals the coefficient of the middle term, which is   4 .

     -16    +    -1    =    -17  

     -8    +    -2    =    -10  

     -4    +    -4    =    -8  

     -2    +    -8    =    -10  

     -1    +    -16    =    -17  

     1    +    16    =    17  

     2    +    8    =    10  

     4    +    4    =    8  

     8    +    2    =    10  

     16    +    1    =    17  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Final result :

 -p • (4p - 1) • (16p2 + 4p + 1)

Similar questions