Math, asked by sourav8219, 1 year ago

factorise 64a square minus 625b square​

Answers

Answered by abhi569
2
Given equation to be factorized : 64a^2 - 625b^2 .


First of all, factorising 64 and 625.

64 = 2 x 2 x 2 x 2 x 2 x 2 = 8 x 8 = 8^2
625 = 5 x 5 x 5 x 5 = 25 x 25 = 25^2


So, 64a^2 - 625b^2 can be written as :

= > 8^2 a^2 - 25^2 b^2

= > ( 8a )^2 - ( 25b )^2


And, from the properties of factorization :
a^2 - b^2 = ( a + b )( a - b )


Thus,
= > ( 8a + 25b )( 8a - 25b )


Therefore,
64a^2 - 625b^2 in factorized form is ( 8a + 25b )( 8a - 25b )
 \:
Answered by Anonymous
7
\huge\underline\mathfrak{Question-}

Factorise :

64a² - 625b²

\huge\underline\mathfrak{Answer-}

=> 64a² - 625b²

We know that ;-
=> a² - b² = ( a+b ) ( a-b )

=> (8a)² - (25b)²

<b>=> (8a + 25b ) ( 8a - 25b )</b>
Similar questions