factorise 64a square minus 625b square
Answers
Answered by
2
Given equation to be factorized : 64a^2 - 625b^2 .
First of all, factorising 64 and 625.
64 = 2 x 2 x 2 x 2 x 2 x 2 = 8 x 8 = 8^2
625 = 5 x 5 x 5 x 5 = 25 x 25 = 25^2
So, 64a^2 - 625b^2 can be written as :
= > 8^2 a^2 - 25^2 b^2
= > ( 8a )^2 - ( 25b )^2
And, from the properties of factorization :
a^2 - b^2 = ( a + b )( a - b )
Thus,
= > ( 8a + 25b )( 8a - 25b )
Therefore,
64a^2 - 625b^2 in factorized form is ( 8a + 25b )( 8a - 25b )
First of all, factorising 64 and 625.
64 = 2 x 2 x 2 x 2 x 2 x 2 = 8 x 8 = 8^2
625 = 5 x 5 x 5 x 5 = 25 x 25 = 25^2
So, 64a^2 - 625b^2 can be written as :
= > 8^2 a^2 - 25^2 b^2
= > ( 8a )^2 - ( 25b )^2
And, from the properties of factorization :
a^2 - b^2 = ( a + b )( a - b )
Thus,
= > ( 8a + 25b )( 8a - 25b )
Therefore,
64a^2 - 625b^2 in factorized form is ( 8a + 25b )( 8a - 25b )
Answered by
7
Factorise :
64a² - 625b²
=> 64a² - 625b²
We know that ;-
=> a² - b² = ( a+b ) ( a-b )
=> (8a)² - (25b)²
Similar questions
Computer Science,
7 months ago
Math,
7 months ago
Math,
7 months ago
Math,
1 year ago
Math,
1 year ago