Math, asked by ruks2anasirana, 4 months ago

factorise : 6561a^8 - 256b^8 ​

Answers

Answered by Anonymous
30

Answer

____________________

We have ,

  • 6561a^8 - 256b^8

= (81^4)^2 - (16b^4)^2)

= (81a^4 + 16b^4) (81a^4 - 16b^4)

= (81a^4 + 16b^4 ) {(9a^2)^2 - (4b^2)^2}

= (81a^4+16b^4){(9a^2 +4b^2)(9a^2-4b^2)}

=(81a^4 +16b^4)(9a^2+4b^2){(3a^2)-(2b^2)}

=(81a^4+16b^4)(9a^2+4b^2){(3a+2b)(3a-2b)}

Additional information

_____________________

(a+b)^3=a^3+b^3+3ab(a+b)

_____________________

(a+b)^2 = a^2 + b^2 +2ab

_____________________

(a-b)^2 = a^2 + b^2 -2ab

_____________________

(a-b)(a+b) = a^2 - b^2

_____________________

Similar questions