Math, asked by belamallick678, 11 months ago

factorise 6x^2 +x - 1 = 0​

Answers

Answered by avnibh0513
1

Answer:

6x² - x - 1  =  (3x - 1)(2x + 1)

Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \mathtt{6x {}^{2} + x - 1  = 0} \\  \\  \mathtt{\Longrightarrow \: 6x {}^{2}  + (3 - 2)x - 1 = 0} \\  \\  \mathtt{\Longrightarrow \: 6x {}^{2} + 3x - 2 x - 1 = 0 } \\  \\  \mathtt{\Longrightarrow \: 3x(2x + 1) - 1(2x + 1) = 0 } \\  \\  \mathtt{\Longrightarrow \: (3x - 1)(2x + 1) = 0}

\mathfrak{Now,} \\  \\  \:  \:  \:  \:  \:  \:  \:  \mathtt{3x - 1 = 0} \\  \\\mathtt{\Longrightarrow \: 3x = 1} \\  \\  \mathtt{\therefore \: \:x =  \frac{1}{3}  } \\  \\  \mathfrak{ \underline{ \:  \: Or, \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{2x + 1 = 0} \\  \\ \mathtt{\Longrightarrow \:2x =  - 1 } \\  \\  \mathtt{ \therefore \:  \: x =  \frac{ - 1}{2} } \\  \\  \\   \mathtt{\therefore \:  \: x =  \frac{1}{3}   \:  \: \:  \: and \:  \: \:  \:   \frac{ - 1}{2}  \:  \: }

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION \:  \: } \mid}}}}}

\underline{ \bold{ \:  \:  \: When  \:  \:  \: x  =  \frac{  1 \: }{3}  \:  \:  \: \:  \:  }} \\  \\  \mathtt{L.H.S. =6x {}^{2} + x - 1} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = 6 \times ( \frac{1}{3}) {}^{2}  + ( \frac{1}{3}) - 1  } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ = 6 \times  \frac{1}{9}  +  \frac{1}{3} - 1 }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ =  \frac{2}{3}  +  \frac{1}{3}  - 1}\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ =  \frac{2 + 1 - 3}{3} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \mathtt{ =  \frac{3 - 3}{3} }  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \mathtt{ =  \frac{0}{3} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ = 0 = R.H.S. }\\  \\  \mathfrak{Again,} \\  \\  \underline{ \bold{ \:  \:  \: When  \:  \:  \: x  =  \frac{ - 1 \: }{2}  \:  \:  \: \:  \:  }} \\  \\ \mathtt{L.H.S. =6x {}^{2} + x - 1} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = 6 \times ( \frac{ - 1}{2}) {}^{2}  + ( \frac{ - 1}{2}) - 1  } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ = 6 \times  \frac{1}{4}   -   \frac{1}{2} - 1 }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ =  \frac{3}{2}   -  \frac{1}{2}  - 1}\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ =  \frac{3  -  1 - 2}{2} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \mathtt{ =  \frac{3 - 3}{2} }  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \mathtt{ =  \frac{0}{2} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \mathtt{ = 0 = R.H.S. }\\  \\  \:  \:  \:  \:  \:  \:  \:  \therefore \:  \: \underline{ \bold{ \:  \: L.H.S. = R.H.S.  \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \bold{ \:  \: Hence , \:  verified. \:  \: }}

Similar questions