Math, asked by Tunder, 1 year ago

Factorise 6x^3-25x^2+32x-12

Answers

Answered by AmanRajleo
5
= 6x^3-25x^2+32x-12
= 6x^3-12x^2-13x^2+26x-12. = 6x^2 * (x-2) - 13x * (x-2) +6(x-2). = (x-2) * ( 6x^2-13x+6). = (x-2) * (6x^2-4x-9x+6). = (x-2) * [2x * (3x-2) -3(3x-2)]. = (x-2) * (2x-3) * (3x-2).
Answered by nilesh102
1

\textbf{\huge\underline{\underline\red{Solution} : -  }} \\  \\  \bold{ \underline\red{let }} \\   \\\bold{\purple {f(x ) =6{x}^{3} - 25 {x}^{2}  + 32x - 12  }} \\  \\ \bold{ \underline\red {now \: take \: x \:  =  \: 2}} \\ \bold{ \underline\red{so}} \\   \\\bold{\purple {f(x = 2) =6{(2)}^{3} - 25 {(2)}^{2}  + 32(2) - 12  }} \\  \\\bold{\purple {f(x = 2) =6(8) - 25 (4)  + 64 - 12  }} \\  \\\bold{\purple {f(x = 2) =48 -  100 +  52  }} \\  \\\bold{\purple {f(x = 2) = - 52 +  52  }}  \\  \\ \bold{\purple {f(x = 2) = 0 }}  \\  \\  \bold{ \underline\blue{on \: puting \: x  \: =  \: 2 \:  \:we \: get \: f(x) =  \: 0} }\\  \bold{ \underline\blue{hence \: one \: of \: the \: factor \: of \: given \: }} \\  \bold{ \underline\blue{polynomial \: is \: (x - 2).}} \\  \\   \bold{\underline  \red{now}}\\   \\\bold{\purple { =>6{x}^{3} - 25 {x}^{2}  + 32x - 12  }} \\  \\  \bold{\purple { =( x - 2)(6 {x}^{2} - 13x + 6 )}} \\  \\ \bold{\purple {=( x - 2)(6 {x}^{2} - 9x - 4x + 6 )}} \\  \\ \bold{\purple { =( x - 2)(3x(2x - 3) - 2( 2x - 3))}} \\  \\ \bold{\purple { =( x - 2)(2x- 3)( 3x - 2)}} \\  \\  \fbox{\bold{ \underline\red{i \: hope \: it \: helps \: you.}}}

Similar questions