Math, asked by bhoomicharan786, 2 months ago

Factorise: 6x³
– 5x²
– 13x + 12​

Answers

Answered by anindyaadhikari13
16

Required Answer:-

Given To Factorise:

  • 6x³ - 5x² - 13x + 12

Solution:

1. Using factor theorem.

Let,

→ p(x) = 6x³ - 5x² - 13x + 12

Putting p = 1, we get,

p(1) = 6 × (1)³ - 5 ×(1)² - 13 × 1 + 12

→ p(1) = 6 - 5 - 13 + 12

→ p(1) = 1 - 13 + 12

→ p(1) = 12 - 12

→ p(1) = 0

Therefore, (x - 1) is a factor. (By Factor Theorem)

x - 1 ) 6x³ - 5x² - 13x + 12  (6x² + x - 12

        6x³ - 6x²

        (-)      (+)

--------------------------------------------

                   x² - 13x

                   x² -   1x

                  (-)     (+)

--------------------------------------------

                        -12x + 12

                        -12x + 12

                          (+)    (-)

--------------------------------------------

                               0

Therefore,

6x³ - 5x² - 13x + 12

= (x - 1)(6x² + x - 12)

= (x - 1)(6x² - 8x + 9x - 12)

= (x - 1)[2x(3x - 4) + 3(3x - 4)]

= (x - 1)(2x + 3)(3x - 4)

Therefore, factorised form of the given polynomial is (x - 1)(2x + 3)(3x - 4)

2. Without using factor theorem.

Given,

= 6x³ - 5x² - 13x + 12

= 6x³ - (6 - 1)x² - (1 + 12)x + 12 (splitting)

= 6x³ - 6x² + x² - x - 12x + 12

= 6x²(x - 1) + x(x - 1) - 12(x - 1)

=  (x - 1)(6x² + x - 12)   (grouping)

= (x - 1)(6x² - 8x + 9x - 12)

= (x - 1)[2x(3x - 4) + 3(3x - 4)]

= (x - 1)(2x + 3)(3x - 4)

→ Therefore, factorised form of the given polynomial is (x - 1)(2x + 3)(3x - 4)

Answer:

  • (x - 1)(2x + 3)(3x - 4).
Similar questions