Math, asked by ren88, 6 months ago

Factorise:

6x³ + x² -10x +3
Plz it's urgent

Answers

Answered by Anonymous
1

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{❥Question᎓}}}}Factorise:

6x³ + x² -10x +3

\huge\tt\underline\blue{❯Answer❮</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

6 {x}^{3}  +  {x}^{2}  - 10x + 3

put x=1 to check

6 {(1)}^{3}  +  {(1)}^{2}  - 10 + 3

7 - 10 + 3

 - 3 + 3 = 0

therefore,(X-1 ) is a factor of the given polynomial

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
20

ANSWER✔

\large\underline\bold{GIVEN,}

\dashrightarrow p(x)= 6^3+x^2-10x+3

\large\underline\bold{TO\:FIND,}

\dashrightarrow to\: factorise\:the\:given\:p(x)

\large\underline\bold{SOLUTION,}

\dashrightarrow Let\:us\:take\:g(x)\:as\:(x-1)

\therefore dividing\:p(x)\:by\:g(x)\\ We\:get,

\red{\text{FOR\: THESE PROCESS REFER THE ATTACHMENT,}}

\dashrightarrow Answer\:we\:get\:is\:(x-1)[6x^2+7x-3]

\therefore factorising\:the\: remaining\:

\dashrightarrow (x-1)[6x^2+7x-3]

\implies (x-1)[6x^2+9x-2x-3]

\implies  (x-1)[ 3x(2x+3)-1(2x+3)]

\implies  (x-1)(3x-1)(2x+3)

\large{\boxed{\bf{ \star\:\:(x-1)(3x-1)(2x+3) \:\: \star}}}

_____________

Attachments:
Similar questions