factorise—7 (a² + b²)² - 15 (a - b) + 8 (a²-b³)²
Answers
Answered by
1
As we know that,
x2 – y2 = (x – y)(x + y)
The given expression can be rewritten as:
7(a2 + b2)2 – 15(a2 + b2)(a2 – b2) + 8 (a2 – b2)2
Let (a2 + b2) = p and (a2 – b2) = q
⇒ 7p2 – 15pq + 8q2
⇒ 7p2 – 7pq – 8pq + 8q2
⇒ 7p(p – q) – 8q(p – q)
⇒ (7p – 8q)(p – q)
On substituting the value of p and q, we get,
⇒ (7(a2 + b2) - 8(a2 – b2))( a2 + b2 – a2 + b2)
⇒ (7a2 + 7b2 – 8a2 + 8b2) (2b2)
⇒ 2b2(15b2 – a2)
Mark Me As Brainslist✔
Similar questions