Math, asked by naveennaman48, 7 months ago

Factorise 7y^2-8y+3​

Answers

Answered by aryan073
2

Answer :

(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)

\underline{\underline{{\purple{\sf Given}}}}

\longrightarrow\displaystyle\small\boxed{\tt\red{7y^2-8y+3}}

 \implies \small \boxed{ \tt \blue{by \: formula \: method}}

 \implies \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

 \implies \displaystyle \sf{x =  \frac{8 \pm \sqrt{ {8}^{2} - 4(7)(3) } }{2 \times 7} }

 \implies \displaystyle \sf{x =  \frac{8   \pm \sqrt{64 - 24\times 3} }{14} }

 \implies \displaystyle \sf{x =  \frac{8 \pm \sqrt{64 - 84} }{14} }

 \implies \displaystyle \sf{x =  \frac{8 \pm \sqrt{ - 20} }{14} }

 \implies \displaystyle \sf {x =  \frac{8 \pm 2\sqrt{5} }{14} }

 \implies \displaystyle \sf{x =  \frac{2(4  \pm \sqrt{5} )}{2 \times 14} }

 \implies \displaystyle \sf {x =   \cancel\frac{2}{2}  \frac{4 \pm \sqrt{5} }{7} }

  \implies \displaystyle \sf{x =  \frac{4 +  \sqrt{5} }{7} and \: x =  \frac{4 -  \sqrt{5} }{7} }

 \mapsto \displaystyle \small \boxed{ \sf \red{ \: the \: roots \: are \: x =  \frac{4 +  \sqrt{5} }{7}  \: and \: x =  \frac{4 -  \sqrt{5} }{7} }}

Similar questions