Math, asked by jatinkumar35905, 1 year ago

factorise 8 a cube minus b cube + 64 C Cube + 24 ABC

Answers

Answered by QGP
69
We have to factorise:

8a^3-b^3+64c^3+24abc


For it, we will use the following identity:


\boxed{x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)}


We can factorize using the identity as follows:

8a^3-b^3+64c^3+24abc \\ \\ = (2a)^3 + (-b)^3 + (4c)^3 -3(2a)(-b)(4c) \\ \\ = (2a-b+4c)((2a)^2+(-b)^2+(4c)^2-(2a)(-b)-(-b)(4c)-(4c)(2a)) \\ \\ = (2a-b+4c)(4a^2+b^2+16c^2+2ab+4bc-8ca)


Thus, The factorized form is


\bold{(2a-b+4c)(4a^2+b^2+16c^2+2ab+4bc-8ca)}


Noah11: do u write in keyboard
Noah11: in computer
QGP: Yes. I type almost all of the answers on a computer. I use a mobile only when I need to solve in a book and upload image.
Noah11: hmm ty!
Answered by Anonymous
23
Given polynomial :
 {8a}^{3}  -  {b}^{3}  + 64 {c}^{3}  + 24abc
Identity to be used :

 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z)( {x}^{2}  +  {y}^{2}   +  {z}^{2}  - xy - yz - zx)
Now ,

 {8a}^{3}  -  {b}^{3}  +  {64c}^{3}   + 24abc \\ {(2a)}^{3}  +  {( - b)}^{3}  +  {(4c)}^{3}  - 3(2a)( - b)(4c)
(2a-b+4c)[(2a)²+(-b)²+(4c)²-(2a)(-b)-(-b)(4c)-(4c)(2a)]

= (2a-b+4c)(4a²+b²+16c²+2ab+4bc-8ca)


#Be Brainly !!
Similar questions