Math, asked by mp94876, 5 months ago

Factorise:
8(x+y)³+27(x-y) ³​

Answers

Answered by AnsweringangelAditiG
0

Answer:

Step-by-step explanation:

ANSWER

8(x+y)

3

−27(x−y)

3

=[2(x+y)]

3

−[3(x−y)]

3

=[2(x+y)−3(x−y)][(2(x+y))

2

+2(x+y)×3(x−y)+(3(x−y))

2

]

=(2x+2y−3x+3y)[4(x

2

+2xy+y

2

)+6(x

2

−y

2

)+9(x

2

−2xy+y

2

)]

=(−x+5y)(4x

2

+8xy+4y

2

+6x

2

−6y

2

+9x

2

−18xy+9y

2

)

=(−x+5y)(19x

2

−10xy+7y

2

)

Answered by Anonymous
3

Answer:

8(x+y)³-27(x-y)³

8(x+y)³-27(x-y)³=(-x+5y)(19x²-10xy+7y²)

Step-by-step explanation:

Given 8(x+y)³-27(x-y)³

= [2(x+y)]³-[3(x-y)]³

=(2x+2y)³-(3x-3y)³

We know the algebraic identity:

a³-b³ = (a-b)(a²+ab+b²)

Here ,

a = 2x+2y, b = 3x-3y

=[2x+2y-(3x-3y)][(2x+2y)²+(2x+2y)(3x-3y)+(3x-3y)²]

=(2x+2y-3x+3y)[4x²+8xy+4y²+6x²-6xy+6xy-6y²+9x²-18xy+9y²]

= (-x+5y)(19x²-10xy+7y²)

Therefore,

8(x+y)³-27(x-y)³

=(-x+5y)(19x²-10xy+7y²)

Similar questions