factorise
8(x+y)³-50(x+y)
Answers
Answer:
2 • (x + y) • (4x2 + 8xy + 4y2
Step-by-step explanation:
(8 • ((x + y)3)) - 50 • (x + y)
STEP
2 :- Equation at the end of step 2
8 • (x + y)3 - 50 • (x + y)
STEP
3 :- Pulling out like terms
3.1
Pull out x+y
After pulling out, we are left with :
(x+y) • ( 8 * (x+y)2 +( 50 * (-1) )) 3.2 Evaluate : (x+y)2 = x2+2xy+y2
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
8x2 + 16xy + 8y2 - 50 =
2 • (4x2 + 8xy + 4y2 - 25)
Final result :
2 • (x + y) • (4x2 + 8xy + 4y2
Step-by-step explanation:
$$\begin{lgathered}= 2(x+y) [ 4(x+y)^{2} - 25 ]\\= 2(x+y) [ 2^{2}(x+y)^{2} - 5^{2} ] \\= 2(x+y) [ (2x+2y)^{2} - 5^{2}]\\=2(x+y)[ (2x+2y+5)(2x+2y-5)]\end{lgathered}$$
$$\boxed { \pink { Since, \:a^{2} - b^{2} = ( a + b )( a - b )}}$$
$$= 2(x+y)(2x+2y+5)(2x+2y-5)$$
Therefore.,
$$\red {Factorisation \:of \: 8(x+y)^{3} - 50(x+y) }$$
$$\green { = 2(x+y)(2x+2y+5)(2x+2y-5)}$$