Factorise: 8(x+y)^3 + 64(2x-y)^3
Answers
Answered by
1
Step-by-step explanation:
Given, 8x^3 - (2x - y) ^3
= (2x) ^3 - (2x - y) ^3
Using the formula:
a^3 - b^3= (a - b)(a^2 + ab + b^2) -------- eq.(1)
Putting the value of a = 2x, b = (2x – y) in the above formula; we get
= (2x – (2x+y)) {(2x) ^2 - 2x*(2x - y) + (2x - y) ^2}
= y {(4x^2 - 4x^2 + 2xy + 4x^2 - 4xy + y^2)}
= y (4x^2 - 2xy + y^2)
Therefore, factorized form of the given problem is y (4x^2 - 2xy + y^2).
Similar questions