English, asked by chandu987, 1 year ago

factorise 8a cube+ root 27 b cube ​

Answers

Answered by Anonymous
1

Answer:

 \star \: \red{(2a +  \sqrt{3} b)(4 {a}^{2}  + 3 {b}^{2}  - 2 \sqrt{3} ab)} \:

Used Identity :

 \implies \:   \red{{x}^{3}  +   {y}^{3} } =  \green{(x + y)( {x}^{2}  +  {y}^{2}  - xy)}

Explanation:

We have ,

 \implies \: 8 {a}^{3}  +  \sqrt{27} \:  { \: b}^{3}   \\  \\  \implies \:  {(2a)}^{3}  +   { (\sqrt{3}b) }^{3}

Using the given identify →

  \small \: \implies \: (2a +  \sqrt{3} b) \bigg( {(2a)}^{2}  +  {( \sqrt{3}b \: ) }^{2}  - 2a \times   \sqrt{3} b \bigg) \\  \\  \implies \:  \small \:  \red{(2a +  \sqrt{3} b)(4 {a}^{2}  + 3 {b}^{2}  - 2 \sqrt{3} ab)}

This is the required solution.

Answered by phalgunagopal
0

Answer:

yak mathadalva?

text maddre enagalla...

Similar questions