Factorise 8a³+27b³+64c³-72abc
Answers
Answered by
16
Answer:
Step-by-step explanation:
Given
8a^3 + 27b^3 + 64c^3 - 72abc
(2a)^3 + (3b)^3 + (4c)^3 - 3. 2a . 3b . 4c
We know that,
a^3 + b^3 + c^ 3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 -ab-bc-ca)
(2a)^3 + (3b)^3 + (4c)^3 - 3. 2a . 3b . 4c= (2a+3b+4c)((2a)^2 + (3b)^2 + (4c)^2 -(2a.3b)-(3b.4c)-(4c.2a))
= (2a+3b+4c)(4a^2+9b^2+16c^2-6ab-12bc-8ca)
Answered by
4
Answer:
it is the correct answer ❤️
Attachments:
Similar questions