Factorise 8a3+72a2-216a+216
Answers
Answer:
Step-by-step explanation:
Final result :
8 • (a3 + 9a2 - 27a + 27)
Step by step solution :
Step 1 :
Equation at the end of step 1 :
(((8 • (a3)) + (23•32a2)) - 216a) + 216
Step 2 :
Equation at the end of step 2 :
((23a3 + (23•32a2)) - 216a) + 216
Step 3 :
Step 4 :
Pulling out like terms :
4.1 Pull out like factors :
8a3 + 72a2 - 216a + 216 =
8 • (a3 + 9a2 - 27a + 27)
Checking for a perfect cube :
4.2 a3 + 9a2 - 27a + 27 is not a perfect cube
Trying to factor by pulling out :
4.3 Factoring: a3 + 9a2 - 27a + 27
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: a3 + 27
Group 2: -27a + 9a2
Pull out from each group separately :
Group 1: (a3 + 27) • (1)
Group 2: (a - 3) • (9a)