Factorise 8n2 -4n-180
Answers
Answer:
82−4−180
8n^{2}-4n-1808n2−4n−180
4(22−−45)
4(2n^{2}-n-45)4(2n2−n−45)
2
Use the sum-product pattern
4(22−−45)
4(2n^{2}{\color{#c92786}{-n}}-45)4(2n2−n−45)
4(22+9−10−45)
4(2n^{2}+{\color{#c92786}{9n}}{\color{#c92786}{-10n}}-45)4(2n2+9n−10n−45)
3
Common factor from the two pairs
4(22+9−10−45)
4(2n^{2}+9n-10n-45)4(2n2+9n−10n−45)
4((2+9)−5(2+9))
4(n(2n+9)-5(2n+9))4(n(2n+9)−5(2n+9))
4
Rewrite in factored form
4((2+9)−5(2+9))
4(n(2n+9)-5(2n+9))4(n(2n+9)−5(2n+9))
4(−5)(2+9)
4(n-5)(2n+9)4(n−5)(2n+9)
Solution
4(−5)(2+9)
Answer:
8n²-4n-180
comparing it with ax²+bx+c=0,we get a=8,b=-4,c=-180
D=b²-4ac
D=(-4)²-4(8)(-180)
D=16-32-180
D=196
by quadratic formula,
x=-b+√D÷2a = -(-4)+√196÷2(8) = 4+14÷16 = 18÷16 =9/8
x=-b-√D÷2a = -(-4)-√196÷2(8) = 4-14÷16 = -10÷16 = -5/8
Step-by-step explanation:
thnks
please mark me as brainlist