Math, asked by lalbabumahto8585, 9 months ago

Factorise 8x^3+729+108x^2+486x

Answers

Answered by ArandkarSarika
23

please mark it as the best..

8x^3+108x^2+486x+729

(2x)^3+3(4x^2)(9)+3(2x)(81)+(9)^3

(2x)^3+3(2x)^2(9)+3(2x)9^2+(9)^3

IT IS IN THE FORM OF : (a+b)^3=a^3+3a^2b+3ab^2+b^3

Hence,the final answer is (2x+9)^3

Answered by pulakmath007
1

8x³ + 729 + 108x² + 486 = (2x + 9)(2x + 9)(2x + 9)

Given :

The expression 8x³ + 729 + 108x² + 486

To find :

Factorise the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

8x³ + 729 + 108x² + 486

Step 2 of 2 :

Factorise the expression

We are aware of the formula that

(a + b)³ = a³ + b³ + 3a²b + 3ab²

Thus we get

8x³ + 729 + 108x² + 486

 \sf =  {(2x)}^{3}  +  {(9)}^{3}  + 3 \times  {(2x)}^{2}  \times 9 + 3 \times 2x \times  {(9)}^{2}

 \sf =  {(2x + 9)}^{3}

 \sf =  (2x + 9)(2x + 9)(2x + 9)

Similar questions