: Factorise 8x³ + 27y3 +36x²y + 54xy²
Answers
Answered by
32
Topic :-
Factorisation
To Factorise :-
8x³ + 27y³ + 36x²y + 54xy²
Solution :-
8x³ + 27y³ + 36x²y + 54xy²
We can write :
--> 8x³ = (2x)³
--> 27y³ = (3y)³
--> 36x²y = 18xy(2x)
--> 54xy² = 18xy(3y)
Replacing values,
(2x)³ + (3y)³ + 18xy(2x) + 18xy(3y)
Taking '18xy' as common,
(2x)³ + (3y)³ + 18xy(2x + 3y)
We can rewrite it as,
(2x)³ + (3y)³ + 3(2x)(3y)(2x + 3y)
We can observe that it is similar to,
a³ + b³ + 3ab(a + b) = (a + b)³
Hence,
(2x)³ + (3y)³ + 3(2x)(3y)(2x + 3y) =
(2x + 3y)³
Answer :-
(2x + 3y)³
Additional Identities :-
a² + 2ab + b² = (a + b)²
a² - 2ab + b² = (a - b)²
a² - b² = (a + b)(a - b)
a³ - b³ - 3ab(a - b) = (a - b)³
a³ + b³ = (a + b)(a² - ab + b²)
a³ - b³ = (a - b)(a² + ab + b²)
Asterinn:
Nice! ( ◜‿◝ )
Similar questions