Factorise 8x³ + 36x²y + 54xy² + 27y³.
Answers
Answered by
4
Answer:
The given expression can be written as
8x³ + 36x²y + 54xy²+ 27y³
= (2x)³ + 3(2x)² (3y) + 3(2x) (3y)² + (3y)³
Comparing with Identity VI,
(x + y)³ = x³ + 3x²y + 3xy² + y³
we get = (2x + 3y)³
= (2x + 3y) (2x + 3y) (2x + 3y).
Answered by
0
Answer:
8x3−27y3−36x2y+54xy2
=(2x)3−(3y)3−3×(2x)2×3y+3×2x×(3y)2
Using,(a−b)3=a3−b3−3a2b+3ab2
=(2x−3y)3
=(2x−3y)(2x−3y)(2x−3y)
Step-by-step explanation:
8x3−27y3−36x2y+54xy2
=(2x)3−(3y)3−3×(2x)2×3y+3×2x×(3y)2
Using,(a−b)3=a3−b3−3a2b+3ab2
=(2x−3y)3
=(2x−3y)(2x−3y)(2x−3y)
Similar questions