Math, asked by abhishek00200, 1 year ago

factorise 9(p-q)^2 -4(2p+q)^2

Answers

Answered by isafsafiya
2

Step-by-step explanation:

solution

Given

 {9(p - q)}^{2}  -  \: 4 {(2p + q)}^{2}  \\  \\  \\ open \: the \: bractest \: using \: formula \\  \\ 9( {p}^{2}  - 2pq +  {q}^{2} ) - 4(4 {p}^{2}  + 4pq +  {q}^{2} ) \\  \\ 9 {p }^{2}  - 18pq + 9 {q}^{2}  - 16 {p }^{2}  - 16pq -  4{q}^{2}  \\  \\  -7  {p }^{2}  - 34pq + 5 {q}^{2}  \\  \\ 7 {p}^{2}  + 34pq - 5 {q}^{2}  \\  \\ factorise \: this \: we \: get \\  \\ 7 {p }^{2}  + 35pq - pq - 5 {q}^{2}  \\  \\ take \: a \: commen \\  \\ 7p(p + 5q) - q(p + 5q) \\  \\ (p + 5q) \: (7p - q)

Answered by harendrachoubay
5

9(p-q)^{2} -4(2p+q)^{2}=(7p-q)(-p-5q).

Step-by-step explanation:

We have,

9(p-q)^{2} -4(2p+q)^{2}

=(3(p-q))^{2} -(2(2p+q))^{2}

=[3(p-q)+2(2p+q)][[3(p-q)-2(2p+q)][

[Since,a^{2} -b^{2} =(a+b)(a-b)]

=(3p-3q+4p+2q)(3p-3q-4p-2q)

=(7p-q)(-p-5q)

The value of 9(p-q)^{2} -4(2p+q)^{2} is equal to (7p-q)(-p-5q).

Hence, 9(p-q)^{2} -4(2p+q)^{2}=(7p-q)(-p-5q).

Similar questions