Factorise... 9a^2 + 4b^2 +6a+ 1
No spamming please
Answers
Factorise The Term
9a²+6a+1 By Middle Term Splitting.
In Middle Term Splitting We Split Middle Term Such That on Multiplying it becomes Product of First and Last Term of Polynomial.
Like Here 9a²+6a+1
Middle Term=6a
can written as 3a+3a On Multiplying it it b come 9a² Which is Product of First and Last Term.
(3a+1)²+(2b)²
(3a+1)²+(2b)²
Answer:
Step-by-step explanation:
Given :
To factorise 9a² - 4b² + 6a + 1
Solution :
9a² - 4b² + 6a + 1
⇒ 9a² + 6a + 1 - 4b²
⇒ 9a² + 3a + 3a + 1 - 4b²
⇒ 3a (3a + 1) + 1 (3a + 1) - 2b (2b)
⇒ (3a + 1) (3a + 1) - (2b)²
⇒ (3a + 1)² - (2b)²
We know that,
a² - b² = (a + b) (a - b)
⇒ (3a + 1)² - (2b)²
⇒ [(3a + 1) + 2b] [(3a + 1) - 2b]
⇒ (3a + 2b + 1) (3a - 2b + 1)
__
If,
9a² + 4b² +6a+ 1 is the real question,.
We know that,
i = imaginary number = √-1
⇒ i² = -1
⇒ 9a² + 4b² + 6a + 1
⇒ 9a² + 6a + 1 + 4b²
⇒ (3a + 1)² - 4i²b²
⇒ (3a + 2ib + 1) (3a - 2ib + 1)