Math, asked by tanmay64jain, 3 months ago

Factorise: 9x² -a² - 2ab -b²​

Answers

Answered by user0888
27

Before Solving:-

We observe that 9x^2=(3x)^2, and a^2+2ab+b^2=(a+b)^2. So, it is a difference of two complete squares.

We have an identity (a+b)(a-b)=a^2-b^2, which will be used in solving this problem.

Solution:-

Given Polynomial

=(3x)^2-(a+b)^2

=\{(3x)+(a+b)\}\{(3x)-(a+b)\}

=(3x+a+b)(3x-a-b)

So, the factorization is (3x+a+b)(3x-a-b).

More Information:-

  • ma+mb=m(a+b)

→ Common factor.

  • a^2+2ab+b^2=(a+b)^2
  • a^2-2ab+b^2=(a-b)^2

→ Complete square of a binomial.

  • a^2-b^2=(a+b)(a-b)

→ Difference of complete squares.

  • x^2+(a+b)x+ab=(x+a)(x+b)

→ Product of binomial.

  • a^3+b^3=(a+b)(a^2-ab+b^2)
  • a^3-b^3=(a-b)(a^2+ab+b^2)

→ Sum or difference of complete cubes.

  • a^2+b^2+c^2-2(ab+bc+ca)=(a+b+c)^2

→ Complete square of a trinomial.

  • a^3+b^3+b^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

→ Difference of cube and product.

  • a^4+a^2b^2+b^4=(a^2+ab+b^2)(a^2-ab+b^2)

→ Sophie-Germain Identity.

Similar questions