Math, asked by Taeeya, 9 months ago

Factorise: a^2-6a^2*b^2+b^4

Answers

Answered by shadowsabers03
5

We're asked to factorise a^4-6a^2b^2+b^4.

We can split 6a^2b^2 as 2a^2b^2+4a^2b^2.

\longrightarrow a^4-6a^2b^2+b^4=a^4-(2a^2b^2+4a^2b^2)+b^4

\longrightarrow a^4-6a^2b^2+b^4=a^4-2a^2b^2-4a^2b^2+b^4

\longrightarrow a^4-6a^2b^2+b^4=a^4-2a^2b^2+b^4-4a^2b^2

\longrightarrow a^4-6a^2b^2+b^4=(a^4-2a^2b^2+b^4)-4a^2b^2\quad\quad\dots(1)

We know that,

\longrightarrow x^2-2xy+y^2=(x-y)^2

Taking x=a^2 and y=b^2,

\longrightarrow (a^2)^2-2(a^2)(b^2)+(b^2)^2=(a^2-b^2)^2

\longrightarrow a^4-2a^2b^2+b^4=(a^2-b^2)^2

Then (1) becomes,

\longrightarrow a^4-6a^2b^2+b^4=(a^2-b^2)^2-4a^2b^2

\longrightarrow a^4-6a^2b^2+b^4=(a^2-b^2)^2-(2ab)^2

Since x^2-y^2=(x+y)(x-y),

\longrightarrow a^4-6a^2b^2+b^4=(a^2-b^2+2ab)(a^2-b^2-2ab)

\longrightarrow\underline{\underline{a^4-6a^2b^2+b^4=(a^2+2ab-b^2)(a^2-2ab-b^2)}}

Hence Factorised!

Similar questions