Math, asked by rb0219448, 11 months ago

factorise (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3​

Answers

Answered by mysticd
5

 We \:know \:that , \\If \: x + y + z = 0 \: then \\x^{3} + y^{3} + z^{3} = 3xyz

 Here, x = a^{2} - b^{2} , \: y = b^{2} - c^{2} \: and \\z = c^{2} - a^{2}

 x + y + z \\= a^{2} - b^{2} + b^{2} - c^{2} + c^{2} - a^{2} \\= 0

 Now, x^{3} + y^{3} + z^{3} \\= ( a^{2} - b^{2} )^{3} +( b^{2} - c^{2})^{3}  +( c^{2} - a^{2} )^{3}\\= 3( a^{2} - b^{2} )( b^{2} - c^{2} )(c^{2} - a^{2})

Therefore.,

 \red {( a^{2} - b^{2} )^{3} +( b^{2} - c^{2})^{3}  +( c^{2} - a^{2} )^{3}}

 \green {= 3( a^{2} - b^{2} )( b^{2} - c^{2} )(c^{2} - a^{2}) }

•••♪

Similar questions