Factorise: (a^3)-(2√2b^3)
Answers
Answered by
317
(a)³ - (2√2b³)
(a)³ - (√2b)³
we know,
a³ - b³ = (a - b)(a² + ab + b²)
so,
a³ -(√2b)³ = ( a-√2b)(a² + √2²b² + √2ab)
=( a -√2b)(a² + 2b² + √2ab)
hence, ( a -√2b) and ( a² +2b² +√2ab) are the factors of a³ -(2√2b³)
(a)³ - (√2b)³
we know,
a³ - b³ = (a - b)(a² + ab + b²)
so,
a³ -(√2b)³ = ( a-√2b)(a² + √2²b² + √2ab)
=( a -√2b)(a² + 2b² + √2ab)
hence, ( a -√2b) and ( a² +2b² +√2ab) are the factors of a³ -(2√2b³)
Answered by
130
hi friend,
a³-(2√2b³)=a³-(√2b)³
we know that a³-b³=(a-b)(a²+ab+b²)
=(a-√2b)(a²+√2ab+2b²)
I hope this will help u :)
a³-(2√2b³)=a³-(√2b)³
we know that a³-b³=(a-b)(a²+ab+b²)
=(a-√2b)(a²+√2ab+2b²)
I hope this will help u :)
brainlyDhruv:
why do we made the '2' to be seprated
Similar questions