Math, asked by harnoor46, 11 months ago

factorise a^3-b^3+1+3ab

Answers

Answered by Siddharta7
4

a^3-b^3+1+3ab

=> a^3+(-b)^3+1^3-3(1*a*(b))

=> {a+(-b)+1){a^2+(-b)^2+1^2-a(-b)-(-b) 1-1a}

=> (a-b+1)(a^2+b^2+1+ab+b-a)

Hope this helps!

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

TO FACTORISE :-

 \huge{ \sf{ \pink{a {}^{3} -  b {}^{3} + 1 +  3ab}}}

 \:  \:  \:  \:  \:  \: \tt{ \red{a {}^{3} -  b {}^{3} + 1 +  3ab }}\\  \\    \tt{ \blue{= (a) {}^{3} + ( - b) {}^{3} + (1) {}^{3}   - 3 \times a \times ( - b) \times 1 }}\\  \\  \tt{ \green{ =  \{a  +  ( - b )+ 1 \} \{ (a) {}^{2} + ( -  b) {}^{2} +( 1) {}^{2}   - a \times ( - b) - }} \\\tt{ \green{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (-  b) \times 1 - 1 \times a \}}} \\  \\   \tt{ \blue{= (a - b + 1)(a {}^{2}  +  b {}^{2} + 1 +  ab + b - a)}} \\  \\  \tt{ \red{= (a - b + 1)(a {}^{2}  +  b {}^{2} + 1  - a + b+  ab)}}

Similar questions