Math, asked by someshvedha, 1 year ago

factorise

a^3-b^3+1+3ab

Answers

Answered by Anonymous
11

Answer:

Step-by-step explanation:

a³-b³+1+3ab

a³+(-b)³+1³-3a(-b)(1)

We know that

x^3+y^3+z^3–3.x.y.z =(x+y+z) (x^2+y^2+z^2-xy-yz-zx).

Question:-

a³+(-b)³+1³-3a(-b)(1)

=[a+(-b)+1] [ a²+(-b)²+1²-a(-b)-(-b)(1)-(1)(a) ]

=(a-b+1)(a²+b²+1+ab+b-a)

=(a-b+1)(a²+b²+ab-a+b+1.)


ben58: IT WAS EASY TO UNDERSTAND
Anonymous: Ok then
Anonymous: Tell what was easy to understand and what was difficult.
Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

TO FACTORISE :-

 \huge{ \sf{ \pink{a {}^{3} -  b {}^{3} + 1 +  3ab}}}

 \:  \:  \:  \:  \:  \: \tt{ \red{a {}^{3} -  b {}^{3} + 1 +  3ab }}\\  \\    \tt{ \blue{= (a) {}^{3} + ( - b) {}^{3} + (1) {}^{3}   - 3 \times a \times ( - b) \times 1 }}\\  \\  \tt{ \green{ =  \{a  +  ( - b )+ 1 \} \{ (a) {}^{2} + ( -  b) {}^{2} +( 1) {}^{2}   - a \times ( - b) - }} \\\tt{ \green{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (-  b) \times 1 - 1 \times a \}}} \\  \\   \tt{ \blue{= (a - b + 1)(a {}^{2}  +  b {}^{2} + 1 +  ab + b - a)}} \\  \\  \tt{ \red{= (a - b + 1)(a {}^{2}  +  b {}^{2} + 1  - a + b+  ab)}}

Similar questions