factorise
a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3
Answers
Answered by
79
a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3 = [a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3
We know, a^3 + b^3 + c^3 =3abc if a+b+c =0
Here, a =[a(b-c)] , b = [b(c-a)] & c =[c(a-b)]
⇒a+b+c = [a(b-c)] + [b(c-a)] + [c(a-b)]
= ab - ac + bc - ab + ac - bc = 0
Therefore, a^3 + b^3 + c^3 = 3abc
⇒[a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3 = 3 [a(b-c)] [b(c-a)] [c(a-b)]
= 3abc* (b-c)* (c-a)* (a-b)
We know, a^3 + b^3 + c^3 =3abc if a+b+c =0
Here, a =[a(b-c)] , b = [b(c-a)] & c =[c(a-b)]
⇒a+b+c = [a(b-c)] + [b(c-a)] + [c(a-b)]
= ab - ac + bc - ab + ac - bc = 0
Therefore, a^3 + b^3 + c^3 = 3abc
⇒[a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3 = 3 [a(b-c)] [b(c-a)] [c(a-b)]
= 3abc* (b-c)* (c-a)* (a-b)
aahtews:
Thank u but the line 2 contains an error it should have been a^3+b^3+c^3=3abc if a+b+c=0
Answered by
50
a³ (b - c)³ + b³ ( c - a)³ + c³ (a - b)³
expand the cubes and cancel the equal and opposite terms.
= a³ b³ - a³ c³ - 3 a³ b c (b - c) + b³ c³ - b³ a³ - 3 b³ a c (c - a)
+ c³ a³ - c³ b³ - 3 c³ a b (a - b)
= - 3 a b c [ a² (b - c) + b² (c - a) + c² (a - b) ]
write b - c as b - a + a - c
= - 3 a b c [ a² (b - a) + a² (a - c) + b² (c - a) + c² (a - b) ]
= - 3 a b c [ (a - b) (c² - a²) + (c - a) (b² - a²) ]
= - 3 a b c [ (a - b) (c + a) ( c - a) + (c -a ) ( b+ a) ( b - a) ]
= - 3 a b c (a - b) (c - a) [ c + a - b - a ]
= 3 a b c (a - b) (c - a) (b - c)
expand the cubes and cancel the equal and opposite terms.
= a³ b³ - a³ c³ - 3 a³ b c (b - c) + b³ c³ - b³ a³ - 3 b³ a c (c - a)
+ c³ a³ - c³ b³ - 3 c³ a b (a - b)
= - 3 a b c [ a² (b - c) + b² (c - a) + c² (a - b) ]
write b - c as b - a + a - c
= - 3 a b c [ a² (b - a) + a² (a - c) + b² (c - a) + c² (a - b) ]
= - 3 a b c [ (a - b) (c² - a²) + (c - a) (b² - a²) ]
= - 3 a b c [ (a - b) (c + a) ( c - a) + (c -a ) ( b+ a) ( b - a) ]
= - 3 a b c (a - b) (c - a) [ c + a - b - a ]
= 3 a b c (a - b) (c - a) (b - c)
Similar questions
English,
8 months ago