Math, asked by smitchimalhotrp4lsbj, 1 year ago

factorise a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3

Answers

Answered by wajeed810
3
a3(b-c)3+b3(c-a)3+c3(a-b)3 Final result :  3 • (a3b - a3c - ab3 + ac3 + b3c - bc3)Reformatting the input :Changes made to your input should not affect the solution:
 (1): "c3"   was replaced by   "c^3".  2 more similar replacement(s).
Step by step solution :Step  1  :Equation at the end of step  1  :  ((((a3)•(b-c))•3)+(((b3)•(c-a))•3))+(c3•(a-b)•3)Step  2  :Equation at the end of step  2  :  ((((a3)•(b-c))•3)+(((b3)•(c-a))•3))+3c3•(a-b) Step  3  :Equation at the end of step  3  :  ((((a3)•(b-c))•3)+(b3•(c-a)•3))+3c3•(a-b)Step  4  :Equation at the end of step  4  :  ((((a3)•(b-c))•3)+3b3•(c-a))+3c3•(a-b) Step  5  :Equation at the end of step  5  :  ((a3•(b-c)•3)+3b3•(c-a))+3c3•(a-b)Step  6  :Equation at the end of step  6  :  (3a3•(b-c)+3b3•(c-a))+3c3•(a-b)Step  7  :Step  8  :Pulling out like terms : 8.1     Pull out like factors :
   3a3b - 3a3c - 3ab3 + 3ac3 + 3b3c - 3bc3  = 
  3 • (a3b - a3c - ab3 + ac3 + b3c - bc3) 
Trying to factor by pulling out : 8.2      Factoring:  a3b - a3c - ab3 + ac3 + b3c - bc3 
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1:  b3c - ab3 Group 2:  a3b - a3c Group 3:  ac3 - bc3 
Pull out from each group separately :
Group 1:   (a - c) • (-b3)Group 2:   (b - c) • (a3)Group 3:   (a - b) • (c3)

Looking for common sub-expressions : 
Group 1:   (a - c) • (-b3)Group 3:   (a - b) • (c3)Group 2:   (b - c) • (a3)
Answered by KarupsK
4
Mark this answer as brainliest answer
Attachments:
Similar questions