factorise a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3
Answers
Answered by
3
a3(b-c)3+b3(c-a)3+c3(a-b)3 Final result : 3 • (a3b - a3c - ab3 + ac3 + b3c - bc3)Reformatting the input :Changes made to your input should not affect the solution:
(1): "c3" was replaced by "c^3". 2 more similar replacement(s).
Step by step solution :Step 1 :Equation at the end of step 1 : ((((a3)•(b-c))•3)+(((b3)•(c-a))•3))+(c3•(a-b)•3)Step 2 :Equation at the end of step 2 : ((((a3)•(b-c))•3)+(((b3)•(c-a))•3))+3c3•(a-b) Step 3 :Equation at the end of step 3 : ((((a3)•(b-c))•3)+(b3•(c-a)•3))+3c3•(a-b)Step 4 :Equation at the end of step 4 : ((((a3)•(b-c))•3)+3b3•(c-a))+3c3•(a-b) Step 5 :Equation at the end of step 5 : ((a3•(b-c)•3)+3b3•(c-a))+3c3•(a-b)Step 6 :Equation at the end of step 6 : (3a3•(b-c)+3b3•(c-a))+3c3•(a-b)Step 7 :Step 8 :Pulling out like terms : 8.1 Pull out like factors :
3a3b - 3a3c - 3ab3 + 3ac3 + 3b3c - 3bc3 =
3 • (a3b - a3c - ab3 + ac3 + b3c - bc3)
Trying to factor by pulling out : 8.2 Factoring: a3b - a3c - ab3 + ac3 + b3c - bc3
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: b3c - ab3 Group 2: a3b - a3c Group 3: ac3 - bc3
Pull out from each group separately :
Group 1: (a - c) • (-b3)Group 2: (b - c) • (a3)Group 3: (a - b) • (c3)
Looking for common sub-expressions :
Group 1: (a - c) • (-b3)Group 3: (a - b) • (c3)Group 2: (b - c) • (a3)
(1): "c3" was replaced by "c^3". 2 more similar replacement(s).
Step by step solution :Step 1 :Equation at the end of step 1 : ((((a3)•(b-c))•3)+(((b3)•(c-a))•3))+(c3•(a-b)•3)Step 2 :Equation at the end of step 2 : ((((a3)•(b-c))•3)+(((b3)•(c-a))•3))+3c3•(a-b) Step 3 :Equation at the end of step 3 : ((((a3)•(b-c))•3)+(b3•(c-a)•3))+3c3•(a-b)Step 4 :Equation at the end of step 4 : ((((a3)•(b-c))•3)+3b3•(c-a))+3c3•(a-b) Step 5 :Equation at the end of step 5 : ((a3•(b-c)•3)+3b3•(c-a))+3c3•(a-b)Step 6 :Equation at the end of step 6 : (3a3•(b-c)+3b3•(c-a))+3c3•(a-b)Step 7 :Step 8 :Pulling out like terms : 8.1 Pull out like factors :
3a3b - 3a3c - 3ab3 + 3ac3 + 3b3c - 3bc3 =
3 • (a3b - a3c - ab3 + ac3 + b3c - bc3)
Trying to factor by pulling out : 8.2 Factoring: a3b - a3c - ab3 + ac3 + b3c - bc3
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: b3c - ab3 Group 2: a3b - a3c Group 3: ac3 - bc3
Pull out from each group separately :
Group 1: (a - c) • (-b3)Group 2: (b - c) • (a3)Group 3: (a - b) • (c3)
Looking for common sub-expressions :
Group 1: (a - c) • (-b3)Group 3: (a - b) • (c3)Group 2: (b - c) • (a3)
Answered by
4
Mark this answer as brainliest answer
Attachments:
Similar questions