Math, asked by namrata29, 1 year ago

factorise: a^4+a^2b^2+b^4

Answers

Answered by rahul866
30
a^4+a^2b^2+b^4
= (a^2+b^2)^2. [since , by using first identity which states that a^2+b^2=(a+b)^2]
Answered by jitumahi435
53

The given expression is:

a^4 + a^2b^2 + b^4

We have to find the factorisation of the given expression.

Solution:

a^4 + a^2b^2 + b^4

= (a^2)^2 + (b^2)^2 + a^2b^2

Using the trigonometric identity:

(x+y)^{2} =x^{2} +y^{2} + 2xy

x^{2} +y^{2} = (x+y)^{2} - 2xy

= (a^2+b^2)^2 - 2a^2b^2  + a^2b^2

= (a^2+b^2)^2 - a^2b^2  

= (a^2+b^2)^2 - (ab)^2  

Using the trigonometric identity:

x^{2} -y^{2} = (x + y)(x - y)

= (a^2+b^2 + ab)(a^2+b^2 - ab)

a^4 + a^2b^2 + b^4 = (a^2+b^2 + ab)(a^2+b^2 - ab)

Thus, the factorisation of the given expression is

"(a^2+b^2 + ab)(a^2+b^2 - ab)".

Similar questions