Math, asked by shuidhaTAMMY, 1 year ago

Factorise : a(a-1)-b(b-1)

Answers

Answered by MaheswariS
93

\textbf{Given:}\\\\a(a-1)-b(b-1)\\\\\textbf{To find:}\\\\\text{Factors of $a(a-1)-b(b-1)$}\\\\\textbf{Solution:}\\\\\text{Consider,}\\\\a(a-1)-b(b-1)\\\\=a^2-a-b^2+b\\\\=a^2-b^2-a+b\\\\=(a^2-b^2)-(a-b)\\\\\text{Using the identity,}\\\boxed{\bf\,a^2-b^2=(a-b)(a+b)}\\\\=(a-b)(a+b)-(a-b)\\\\\text{By taking (a-b) as a common factor}\\\\=(a-b)(a+b-1)\\\\\\\textbf{Answer:}\\\\\textbf{The factors of $\bf\,a(a-1)-b(b-1)$ are (a-b) and (a+b-1)}

Find more:

1.X2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404#

2.Factorise x^4-(x-z)^4​

https://brainly.in/question/14993176

3.a^4+b^4-7a^2b^2 factorise​

https://brainly.in/question/8387647

Answered by Poshiga
37

Step-by-step explanation:

a(a-1)-b(b-1)

a²-b²-(a-b)

(a-b)(a+b)-(a-b)

(a-b)(a+b-1)

Similar questions