English, asked by arishfa, 1 year ago

factorise (a-b) 3+(b-c) 3+(c-a)3

Answers

Answered by Dikusneha
589
(a-b)3 + (b-c)3 + (c-a)3 = a3 - b3 - 3ab(a-b) + b3 - c3 - 3bc(b-c) + c3 - a3 - 3ca(c-a)
= - 3a2b + 3ab2 - 3b2c + 3bc2 - 3ac2 + 3 a2c = 3 (- a2b + ab2 - b2c + bc2 - ac2 + a2c)
= 3 [(a2(c-b) + (b2(a-c) + (c2(b-a)]

Or

Let x = (a – b), y = (b – c) and z = (c – a)
Consider, x + y + z = (a – b) + (b – c) + (c – a) = 0
⇒ x3 + y3 + z3 = 3xyz
That is (a – b)3 + (b – c)3 + (c – a)3 = 3(a – b)(b – c)(c – a)



Hope it helped☺☺
Answered by ansiyamundol2
9

Answer:

(a-b) ^{3} +(b-c)^{3} +(c-a)^{3} can be factorized as :

(i) 3(a - b)(b - c)(c - a)

(ii) 3 [(a^{2} (c-b)) + (b^{2} (a-c)) + (c^{2} (b-a))]

Explanation:

  • Let x = (a - b), y = (b - c) and z = (c - a)
  • Consider, x + y + z = (a - b) + (b - c) + (c - a) = 0
  • x^{3}  + y^{3}  + z^{3}  = 3xyz
  • That is, (a - b)^{3}  + (b - c)^{3}  + (c - a)^{3}  = 3(a -b)(b - c)(c - a)

Alternatively,

  • (a-b) ^{3} +(b-c)^{3} +(c-a)^{3} = a^{3}  - b^{3}  - 3ab(a-b) + b^{3}  - c^{3}  - 3bc(b-c) + c^{3}  - a^{3}  - 3ca(c-a)
  • = - 3a^{2} b + 3ab^{2}  - 3b^{2} c + 3bc^{2}  - 3ac^{2}  + 3 a^{2} c = 3 (- a^{2} b + ab^{2}  - b^{2} c + bx^{2}  - ac^{2}  + a^{2} c)
  • = 3 [(a^{2} (c-b)) + (b^{2} (a-c)) + (c^{2} (b-a))]

Similar questions