Factorise( a+b)^3 +(b+c)^3+ (c+a)^3-3(a+b)(b+c)(c+a)
Answers
Answered by
8
let X=(a+b)
y=(b+c)
z=(c+a)
then,
=x^3+y^3+z^3-3xyz
=(X+y+z)(x^2+y^2+z^2-xy-yz-xz)
putting their value:
=[a+b+b+c+c+a][(a+b)^2+(b+c)^2+(c+a)^2-(a+b)(b+c)-(b+c)(c+a)-(c+a)(a+b)
=(2a+2b+2c)[a^2+b^2+2ab+b^2+c^2+2bc+c^2+a^2+2ac-(ab+ac+b^2+bc)-(bc+ab+c^2+ac)-(ac+bc+a^2+ab)
=(2a+2b+2c)(a^2+b^2+2ab+b^2+c^2+2bc+c^2+a^2+2ac-ab-ac-b^2-bc-bc-ab-c^2-ac-ac-bc-a^2-ab)
=(2a+2b+2c)(b^2+c^2+a^2)
hope it helps u
plz Mark as brainliest
Answered by
1
Answer:
Step-by-step explanation:
BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST
Attachments:
Similar questions