Math, asked by loxzev, 4 months ago

Factorise (a + b + c)3 – (a3 + b3 + c3 )

Answers

Answered by ashlesha9744
1

Answer:

Hope it's help full for u

Step-by-step explanation:

(a+b+c)

3

−a

3

−b

3

−c

3

=[(a+b+c)

3

−a

3

]−[b

3

+c

3

]

={(a+b+c−a)[(a+b+c)

2

+a

2

+(a+b+c)a]}−[(b+c)(b

2

+c

2

−bc)]

={(b+c)[(a+b+c)

2

+a

2

+(a+b+c)a]}−[(b+c)(b

2

+c

2

−bc)]

=(b+c)[(a+b+c)

2

+a

2

+a

2

+ab+ac−b

2

−c

2

+bc] =(b+c)[(a

2

+b

2

+c

2

+2ab+2bc+2ac)+2a

2

+ab+ac−b

2

−c

2

+bc]

=(b+c)[3a

2

+3ab+3bc+3ac]

=3(b+c)[a

2

+ab+bc+ac]

=3(b+c)[a(a+b)+c(b+a)]

=3(b+c)(a+b)(a+c)

Hence, (a+b+c)

3

−a

3

−b

3

−c

3

=3(a+b)(b+c)(c+a)

Similar questions