factorise : [a+b] whole cube minus 8
Answers
Answered by
76
I think your question is (a+b)^3-8
hence (a+b)^3-(2) ^3
according to formula a^3-b^3=(a-b)(a^2+b^2+ab)
so, (a+b-2){(a+b)^2+4+2 (a+b)}
hence (a+b)^3-(2) ^3
according to formula a^3-b^3=(a-b)(a^2+b^2+ab)
so, (a+b-2){(a+b)^2+4+2 (a+b)}
Answered by
54
Answer:
(a+b)³-8
(a+b)³-8= (a+b-2)(a²+b²+2ab+2a+2b+4)
Step-by-step explanation:
Given (a+b)³-8
= (a+b)³-2³
/* By algebraic identity:
*/
= [(a+b)-2][(a+b)²+(a+b)2+2²]
=(a+b-2)(a²+b²+2ab+2a+2b+4)
Therefore,
(a+b)³-8
= (a+b-2)(a²+b²+2ab+2a+2b+4)
•••♪
Similar questions