factorise A to the power 12 - B to the power 12
Answers
Answered by
91
a^12 - b^12
= (a^6)^2 - (b^6)^2
= (a^6 + b^6)(a^6 - b^6)
= [ (a^2)^3 + (b^2 )^3] [ (a^2) ^3 - (b^2)^3]
= (a^2 + b^2) (a^4 + b^4 - a^2 b^2) (a^2 - b^2) (a^4 + b^4 + a^2 b^2)
= (a^2 + b^2) (a^4 + b^4 - a^2 b^2) (a+b) (a-b) (a^4 + b^4 + 2a^2 b^2 - a^2 b^2)
= (a+b) (a-b) [ (a^2 +b^2)^2 - (ab)^2] (a^2 + b^2) (a^4 + b^4 - a^2 b^2)
= (a+b) (a-b) (a^2 + b^2 + ab) (a^2 + b^2 - ab) (a^2 + b^2) (a^4 + b^4 - a^2 b^2)
= (a^6)^2 - (b^6)^2
= (a^6 + b^6)(a^6 - b^6)
= [ (a^2)^3 + (b^2 )^3] [ (a^2) ^3 - (b^2)^3]
= (a^2 + b^2) (a^4 + b^4 - a^2 b^2) (a^2 - b^2) (a^4 + b^4 + a^2 b^2)
= (a^2 + b^2) (a^4 + b^4 - a^2 b^2) (a+b) (a-b) (a^4 + b^4 + 2a^2 b^2 - a^2 b^2)
= (a+b) (a-b) [ (a^2 +b^2)^2 - (ab)^2] (a^2 + b^2) (a^4 + b^4 - a^2 b^2)
= (a+b) (a-b) (a^2 + b^2 + ab) (a^2 + b^2 - ab) (a^2 + b^2) (a^4 + b^4 - a^2 b^2)
samstabrez:
thanx bro for this
Answered by
16
Step-by-step explanation:
hope this is helpful for you
Attachments:
Similar questions