Math, asked by samstabrez, 1 year ago

factorise A to the power 12 - B to the power 12

Answers

Answered by gaurav2013c
91
a^12 - b^12

= (a^6)^2 - (b^6)^2

= (a^6 + b^6)(a^6 - b^6)

= [ (a^2)^3 + (b^2 )^3] [ (a^2) ^3 - (b^2)^3]

= (a^2 + b^2) (a^4 + b^4 - a^2 b^2) (a^2 - b^2) (a^4 + b^4 + a^2 b^2)

= (a^2 + b^2) (a^4 + b^4 - a^2 b^2) (a+b) (a-b) (a^4 + b^4 + 2a^2 b^2 - a^2 b^2)

= (a+b) (a-b) [ (a^2 +b^2)^2 - (ab)^2] (a^2 + b^2) (a^4 + b^4 - a^2 b^2)

= (a+b) (a-b) (a^2 + b^2 + ab) (a^2 + b^2 - ab) (a^2 + b^2) (a^4 + b^4 - a^2 b^2)

samstabrez: thanx bro for this
Answered by mukeshgour2911
16

Step-by-step explanation:

hope this is helpful for you

Attachments:
Similar questions