factorise a: (x+1)^2-(y-1)^2 b: 16x^4- 81y^4 q2: factorise (a+b)^2-14c(a+b)+49c^2
Answers
Answered by
3
Hi ...dear..
.
here is your answer....
in part a and b I used formula of a²-b² =(a+b)(a-b)..
.
in second question
let the a+b be x so it will become whole square of (x-7c)...
put the value of x in last......see picture
hope it helped you.....
Regards.
#shubhendu
.
here is your answer....
in part a and b I used formula of a²-b² =(a+b)(a-b)..
.
in second question
let the a+b be x so it will become whole square of (x-7c)...
put the value of x in last......see picture
hope it helped you.....
Regards.
#shubhendu
Attachments:
Krrish29:
hi
Answered by
4
(a)
Given Equation is (x + 1)^2 - (y - 1)^2
We know that a + b)^2 = a^2 + b^2 + 2ab, (a - b)^2 = a^2 + b^2 - 2ab.
= > x^2 + 1 + 2x - (y^2 + 1 - 2y)
= > x^2 + 1 + 2x - y^2 - 1 + 2y
= > x^2 + 2x + 2y - y^2
= > x^2 - y^2 + 2x + 2y
We know that a^2 - b^2 = (a + b)(a - b)
= > (x + y)(x - y) + 2(x + y)
= > (x + y)[x - y+ 2].
Therefore factorization of (x + 1)^2 - (y - 1)^2 = (x + y[x - y + 2]
(2)
Given 16x^4 - 81y^4
= > (4x^2)^2 - (9y^2)^2
= > (4x^2 + 9y^2)(4x^2 - 9y^2)
= > (4x^2 + 9y^2)((2x)^2 - (3y)^2)
= > (4x^2 + 9y^2)((2x + 3y)(2x - 3y))
= > (4x^2 + 9y^2)(2x + 3y)(2x - 3y)
Therefore factorization of 16x^4 - 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x - 3y).
(3)
(a + b)^2 - 14c(a + b) + 49c^2
= > (a + b)^2 - 7c(a + b) - 7c(a + b) + 49c^2
= > (a + b)[a + b - 7c] - 7c[a + b - 7c]
= > (a + b - 7c)(a + b - 7c)
= > (a + b - 7c)^2.
Therefore Factorization of (a + b)^2 - 14c(a + b) + 49c^2 = (a + b - 7c)^2.
Hope this helps!
Given Equation is (x + 1)^2 - (y - 1)^2
We know that a + b)^2 = a^2 + b^2 + 2ab, (a - b)^2 = a^2 + b^2 - 2ab.
= > x^2 + 1 + 2x - (y^2 + 1 - 2y)
= > x^2 + 1 + 2x - y^2 - 1 + 2y
= > x^2 + 2x + 2y - y^2
= > x^2 - y^2 + 2x + 2y
We know that a^2 - b^2 = (a + b)(a - b)
= > (x + y)(x - y) + 2(x + y)
= > (x + y)[x - y+ 2].
Therefore factorization of (x + 1)^2 - (y - 1)^2 = (x + y[x - y + 2]
(2)
Given 16x^4 - 81y^4
= > (4x^2)^2 - (9y^2)^2
= > (4x^2 + 9y^2)(4x^2 - 9y^2)
= > (4x^2 + 9y^2)((2x)^2 - (3y)^2)
= > (4x^2 + 9y^2)((2x + 3y)(2x - 3y))
= > (4x^2 + 9y^2)(2x + 3y)(2x - 3y)
Therefore factorization of 16x^4 - 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x - 3y).
(3)
(a + b)^2 - 14c(a + b) + 49c^2
= > (a + b)^2 - 7c(a + b) - 7c(a + b) + 49c^2
= > (a + b)[a + b - 7c] - 7c[a + b - 7c]
= > (a + b - 7c)(a + b - 7c)
= > (a + b - 7c)^2.
Therefore Factorization of (a + b)^2 - 14c(a + b) + 49c^2 = (a + b - 7c)^2.
Hope this helps!
Similar questions