Math, asked by vanshsinghal987, 11 months ago

Factorise
a) x2-3x/2
b) 3x2-5x
c) 4x-2x2
d) 9x2-3x
e) 4p3-q3/2

Answers

Answered by lubna165
1

Answer:

Mark me as the brainlist......

Attachments:
Answered by amankumaraman11
0

 \bf  \huge{x}^{2}  -  \frac{3x}{2}  \\    \\  \sf=  >  \red{ \:  \:  \:  \: x(x -  \frac{3}{2}  \bigg)} \\

 \\  \\

 \bf \huge {3x}^{2}  - 5x \\  \\ \sf  =  >  \red{x(3x - 5)}

 \\  \\

 \bf \huge4x -  {2x}^{2}  \\ \\ \sf  =  >  {2x(2 -  {x}^{2}) } \\ \sf  =  > 2x[ {( \sqrt{2} )}^{2} -  {(x)}^{2}  ] \\   \sf=  > 2x[( \sqrt{2}  - x)( \sqrt{2}  + x)] \\  \sf =  >  \red{2x( \sqrt{2}  - x)( \sqrt{2} + x )}

 \\  \\

 \bf \huge {9x}^{2}  - 3x \\  \\   \sf=  > \:  \:  \:  \red{ 3x(3x - 1)}

 \\  \\

 \bf \huge  {4p}^{3}  - \frac{ {q}^{3} }{2}  \\  \\  \sf =  >   \bigg(\sqrt[3]{4}p \bigg)^{3}  -  \bigg(  \frac{q}{ \sqrt[3]{2} } \bigg)^{3}  \\  \\ \small{\sf  =  >  \bigg( \sqrt[3]{4}p -  \frac{q}{ \sqrt[3]{2} }  \bigg ) \bigg [( \sqrt[3]{4}p)^{2}  +  \bigg(  \frac{q}{ \sqrt[3]{2} } \bigg) ^{2}  +  \frac{ \sqrt[3]{4} \: pq }{ \sqrt[3]{2} } \bigg] }\\  \\ \small{ \sf =  >  \red{\bigg( \sqrt[3]{4}p -  \frac{q}{ \sqrt[3]{2} }  \bigg )  \bigg( \sqrt[3]{16} {p}^{2}  +  \frac{ {q}^{2} }{ \sqrt[3]{4} } +   \frac{ \sqrt[3]{4} }{ \sqrt[3]{2} }pq \bigg)}}

 \\  \\  \\

</p><p>&lt;marquee&gt; Mark my Answer BRÀINLIEST

Similar questions