Math, asked by Anonymous, 1 year ago

Factorise ➡️

(a² - 2a)² - 23(a² - 2a) + 120
__!

Answers

Answered by Anonymous
12

✨нєγα ∂єαя✨

Refer the attachment for the solution ^^

Attachments:
Answered by InnocentBOy143
5

\huge\bigstar\mathfrak\blue{\underline{\underline{SOLUTION:}}}

The given polynomial is,

( {a}^{2}  - 2a) {}^{2}  - 23( {a}^{2}  - 2a) + 120 = 0........(1) \\   let \:  {a}^{2}  - 2a = x.............(2)

So, equation (1) becomes,

 {x}^{2}  - 23x + 120 = 0 \\  =  >  {x}^{2}  - 15x - 8x + 120 = 0 \\  =  > x(x - 15) - 8(x - 15) = 0 \\  =  > (x - 15)(x - 8) = 0 \\  =  > x = 15 \: or \: x = 8

Substitute value of x in equation (2), we have,

When x= 15

  {a}^{2}  - 2a = 15 \\  =  >  {a}^{2}  - 2a - 15 = 0 \\  =  >   {a}^{2}   - 5a + 3a - 15 = 0 \\  =  > a(a - 5) + 3(a - 5) = 0 \\  =  > (a - 5)(a + 3) = 0 \\  =  > a = 5 \: or \: a =  - 3

When x= 8

 {a}^{2}  - 2a = 8 \\  =  >  {a}^{2}  - 2a - 8 = 0  \\  =  >  {a}^{2}  - 4a + 2a - 8 = 0 \\  =  > a(a - 4) + 2(a - 4) = 0 \\  =  > (a - 4)(a + 2) = 0 \\  =  > a = 4 \: or \: a =  - 2

Hence, a= 5,-3,4, & -2.

hope it helps ☺️

Similar questions